437 research outputs found

    Many-to-Many Matching Games for Proactive Social-Caching in Wireless Small Cell Networks

    Full text link
    In this paper, we address the caching problem in small cell networks from a game theoretic point of view. In particular, we formulate the caching problem as a many-to-many matching game between small base stations and service providers' servers. The servers store a set of videos and aim to cache these videos at the small base stations in order to reduce the experienced delay by the end-users. On the other hand, small base stations cache the videos according to their local popularity, so as to reduce the load on the backhaul links. We propose a new matching algorithm for the many-to-many problem and prove that it reaches a pairwise stable outcome. Simulation results show that the number of satisfied requests by the small base stations in the proposed caching algorithm can reach up to three times the satisfaction of a random caching policy. Moreover, the expected download time of all the videos can be reduced significantly

    A Multi-Game Framework for Harmonized LTE-U and WiFi Coexistence over Unlicensed Bands

    Full text link
    The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base stations (BSs) to boost their capacity and offload their traffic by exploiting the underused unlicensed bands. However, to reap the benefits of LTE-U, it is necessary to address various new challenges associated with LTE-U and WiFi coexistence. In particular, new resource management techniques must be developed to optimize the usage of the network resources while handling the interdependence between WiFi and LTE users and ensuring that WiFi users are not jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as \emph{multi-game} framework is proposed as a promising approach for modeling resource allocation problems in LTE-U. In such a framework, multiple, co-existing and coupled games across heterogeneous channels can be formulated to capture the specific characteristics of LTE-U. Such games can be of different properties and types but their outcomes are largely interdependent. After introducing the basics of the multi-game framework, two classes of algorithms are outlined to achieve the new solution concepts of multi-games. Simulation results are then conducted to show how such a multi-game can effectively capture the specific properties of LTE-U and make of it a "friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine, Special Issue on LTE in Unlicensed Spectru

    Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle

    Full text link
    Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde Matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent, identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.Comment: 28 pages. To appear in IEEE Transactions on Information Theor

    Fractional Pilot Reuse in Massive MIMO Systems

    Full text link
    Pilot contamination is known to be one of the main impairments for massive MIMO multi-cell communications. Inspired by the concept of fractional frequency reuse and by recent contributions on pilot reutilization among non-adjacent cells, we propose a new pilot allocation scheme to mitigate this effect. The key idea is to allow users in neighboring cells that are closest to their base stations to reuse the same pilot sequences. Focusing on the uplink, we obtain expressions for the overall spectral efficiency per cell for different linear combining techniques at the base station and use them to obtain both the optimal pilot reuse parameters and the optimal number of scheduled users. Numerical results show a remarkable improvement in terms of spectral efficiency with respect to the existing techniques.Comment: Paper presented at the IEEE ICC 2015 Workshop on 5G & Beyond - Enabling Technologies and Application

    Distributed Binary Detection with Lossy Data Compression

    Full text link
    Consider the problem where a statistician in a two-node system receives rate-limited information from a transmitter about marginal observations of a memoryless process generated from two possible distributions. Using its own observations, this receiver is required to first identify the legitimacy of its sender by declaring the joint distribution of the process, and then depending on such authentication it generates the adequate reconstruction of the observations satisfying an average per-letter distortion. The performance of this setup is investigated through the corresponding rate-error-distortion region describing the trade-off between: the communication rate, the error exponent induced by the detection and the distortion incurred by the source reconstruction. In the special case of testing against independence, where the alternative hypothesis implies that the sources are independent, the optimal rate-error-distortion region is characterized. An application example to binary symmetric sources is given subsequently and the explicit expression for the rate-error-distortion region is provided as well. The case of "general hypotheses" is also investigated. A new achievable rate-error-distortion region is derived based on the use of non-asymptotic binning, improving the quality of communicated descriptions. Further improvement of performance in the general case is shown to be possible when the requirement of source reconstruction is relaxed, which stands in contrast to the case of general hypotheses.Comment: to appear on IEEE Trans. Information Theor

    Circuit-Aware Design of Energy-Efficient Massive MIMO Systems

    Get PDF
    Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.Comment: Published at International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014), 4 pages, 3 figures. This version corrects an error related to Lemma

    Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination

    Full text link
    To improve the cellular energy efficiency, without sacrificing quality-of-service (QoS) at the users, the network topology must be densified to enable higher spatial reuse. We analyze a combination of two densification approaches, namely "massive" multiple-input multiple-output (MIMO) base stations and small-cell access points. If the latter are operator-deployed, a spatial soft-cell approach can be taken where the multiple transmitters serve the users by joint non-coherent multiflow beamforming. We minimize the total power consumption (both dynamic emitted power and static hardware power) while satisfying QoS constraints. This problem is proved to have a hidden convexity that enables efficient solution algorithms. Interestingly, the optimal solution promotes exclusive assignment of users to transmitters. Furthermore, we provide promising simulation results showing how the total power consumption can be greatly improved by combining massive MIMO and small cells; this is possible with both optimal and low-complexity beamforming.Comment: Published at International Conference on Telecommunications (ICT 2013), 6-8 May 2013, Casablanca, Morocco, 5 pages, 4 figures, 2 tables. This version includes the Matlab code necessary to reproduce the simulations; see the ancillary files. This version also corrects errors in Table 1 and in the simulations, which affected Figs. 3-

    A Multi-Service Oriented Multiple-Access Scheme for Next-Generation Mobile Networks

    Full text link
    One of the key requirements for fifth-generation (5G) cellular networks is their ability to handle densely connected devices with different quality of service (QoS) requirements. In this article, we present multi-service oriented multiple access (MOMA), an integrated access scheme for massive connections with diverse QoS profiles and/or traffic patterns originating from both handheld devices and machine-to-machine (M2M) transmissions. MOMA is based on a) stablishing separate classes of users based on relevant criteria that go beyond the simple handheld/M2M split, b) class dependent hierarchical spreading of the data signal and c) a mix of multiuser and single-user detection schemes at the receiver. Practical implementations of the MOMA principle are provided for base stations (BSs) that are equipped with a large number of antenna elements. Finally, it is shown that such a massive-multiple-input-multiple-output (MIMO) scenario enables the achievement of all the benefits of MOMA even with a simple receiver structure that allows to concentrate the receiver complexity where effectively needed.Comment: 6 pages, 3 figures, accepted to the European Conference on Networks and Communications (EuCNC 2016
    corecore